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Generative Adversarial 
Networks (GANs)



Classic parametric models

ÅDensity function available
ÅLimited expressive power
ÅMature field in statistics and learning theory
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Implicit Model / Neural Sampler / Likelihood-free Model

ÅHighly expressive model class
ÅDensity function not defined or intractable
ÅLack of theory and learning algorithms
ÅBasis for generative adversarial networks (GANs)
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Implicit Models



Learning Probabilistic Models
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Learning Probabilistic Models
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Assumptions on P:

Å tractable sampling
Å tractable parameter gradient with respect to sample
Å tractable likelihood function



Principles of Density Estimation

ÅKernel MMD / DISCO

ÅWasserstein GANs

Integral Probability Metrics
[Müller, 1997]

[Sriperumbuduret al., 2010]

ꞈ ὖȟὗ ÓÕÐ
ᶰꞈ

ὪÄὖ ὪÄὗ

Proper scoring rules
[Gneitingand Raftery, 2007]

Ὓὖȟὗ ὛὖȟὼÄὗὼ

ÅVariationalAutoencoders

ÅDISCO networks

f-divergences
[Ali and Silvey, 1966],
[Nguyen et al., 2010]
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ÅGenerative adversarial 
networks

ÅὪ-GAN, ὦ-GAN



Talk Parts

(Introduction)

1. Two viewpoints on GANs

2. Solved Problems in GANs

3. Open Problems in GANs



Part 1: Two Viewpoints on GANs



Viewpoint 1: Statistical Divergences



Principles of Density Estimation

Integral Probability Metrics
[Müller, 1997]

[Sriperumbuduret al., 2010]
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Proper scoring rules
[Gneitingand Raftery, 2007]
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f-divergences
[Ali and Silvey, 1966],
[Nguyen et al., 2010]
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Assumes density ratio exists 
everywhere

No density required

Nguyen/Wainwright/Jordan Duality
[Nguyen et al., 2010]
or
Donsker-Varadhanrepresentation
[Belghaziet al., 2018]

Analytic solution (MMD) or
Enforcing constraints on Ὢ(WGAN)



Integral Probability Metrics (IPM) [Sriperumbudur et al., JMLR 2010]

ÅMaximum mean discrepancy

Åꞈ is RKHS, then

Åꞈ ὖȟὗ ‘ ‘
ꞈ

Å[Dziugaite et al., 2015] and
[Li et al., 2015]

ꞈ ὖȟὗ ÓÕÐ
ᶰꞈ

ὪÄὖ ὪÄὗ

Å Wasserstein distance
Å iꞈs set of Lipschitz-bounded 

functions
Å [Arjovskyet al., 2017]
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Principles of Density Estimation

Integral Probability Metrics
[Müller, 1997]

[Sriperumbuduret al., 2010]
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ὪÄὖ ὪÄὗ

Proper scoring rules
[Gneitingand Raftery, 2007]
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f-divergences
[Ali and Silvey, 1966],
[Nguyen et al., 2010]
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Assumes density ratio exists 
everywhere

No density required

Nguyen/Wainwright/Jordan Duality
[Nguyen et al., 2010] (GAN)
or
Donsker-Varadhanrepresentation
[Belghaziet al., 2018]

Analytic solution (MMD) or
Enforcing constraints on Ὢ(WGAN)



Ὢ-divergences



Estimating Ὢ-divergences from samples

ÅDivergence between two distributions
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f : generator function (convex & f(1)=0)

ÅEvery convex function Ὢhas a Fenchelconjugate Ὢᶻso that
Ὢό ÓÕÐ

ᶰ ᶻ

ὸό Ὢz ὸ

[Nguyen, Wainwright, Jordan, 2010]
[Nowozin et al., 2016]

òany convex f can be represented as point-wise max of linearfunctionsó





Estimating Ὢ-divergences from samples (cont)
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[Nguyen, Wainwright, Jordan, 2010]

Approximate using:        samples from P samples from Q



Ὢ-GAN and GAN objectives

ÅGAN
ÍÉÎÍÁØͯ ÌÏÇὈ ὼ ͯ ÌÏÇρ Ὀ ὼ

ÅὪ-GAN
ÍÉÎÍÁØ ͯ Ὕ ὼ ͯ Ὢz Ὕ ὼ

ÅGAN discriminator-variationalfunction correspondence: ÌÏÇὈ ὼ Ὕ ὼ

ÅGAN minimizes the Jensen-Shannon divergence (which was also pointed out in 
Goodfellow et al., 2014)

ÅLimitations of discriminator function class: weaker lower bound



Viewpoint 2: Algorithmic



GAN Training Objective [Goodfellow et al., 2014]

ÅGenerator tries to fool discriminator (i.e. generate realistic samples)

ÅDiscriminator tries to distinguish fake from real samples

ÅSaddle-point problem

Generator ὖ

Adversary Ὀ

Binary classifier
Training set
ὼȟỄȟὼ ὗͯ

ÍÉÎÍÁØͯ ÌÏÇὈ ὼ ͯ ÌÏÇρ Ὀ ὼ



Smooth two-player game

ÅὪ-GAN
ÍÉÎÍÁØ ͯ Ὕ ὼ ͯ ὪᶻὝ ὼ

ÅDefine the learning problem as solving a game

ÅLimitations of discriminator function class are virtue

ÅAnalyzeproperties of the game

ÅAnalyzeproperties of algorithms to solve the game



Part 2: Solved Problems in GANs

(as of February 2018)



Mode Collapse and Stability

Mode collapse example [Roth et al., 2017]



Mode Collapse and Stability

Unstable Training Behaviourexample [Roth et al., 2017]



Understanding and Resolving
GAN Mode Collapse and Instability

Mode Collapse
and

Training Instability

Divergence Viewpoint

[Arjovskyand Bottou, 2016],
[Sønderby et al., 2016],

[Roth et al., 2017],
[Mescheder, 2018]

[Mescheder et al., 2017]
[Mescheder, 2018]

Algorithmic Viewpoint



Divergence View
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Divergence View (cont)

Ὃ

‘ ὴ

ὴὼ not defined a.e.

Hence, f-divergence not defined!



Fixing the Problem: Generalized Divergence

ὴ

ὴὼ not defined a.e.

ÅUse generalized Ὢ-divergence
Ὀȟ ὖȟὗ Ὀ ὑ ὖzȟὑ ὗz

Å Implementation: add noise
[Sønderby et al., 2016]
[Arjovskyand Bottou, 2016]

Å Implementation: analytic
[Roth et al., 2017]

ÅChoice of kernel introduces local geometry



Regularization [Roth et al., NIPS 2017]

ÅÍÉÎÍÁØ ͯ Ὕ ὼ ͯ ὪᶻὝ ὼ



ς ͯ ὪᶻᴂᴂὝ ὼ Ὕɳ ὼ

Å Intuition:
άYŜŜǇ ŘƛǎŎǊƛƳƛƴŀǘƻǊ ǎƳƻƻǘƘ ǿƘŜƴ ŘŜƴǎƛǘȅ Ǌŀǘƛƻ ŘŜǾƛŀǘŜǎ ŦǊƻƳ мΦέ

Å Derived from instance noise, using Taylor expansions



Algorithmic View [Mescheder et al., 2017]
(with figures from Ferenc Huszar)

ÅSolving for saddle points is different 
from gradient descent

ÅMinimization problems yield 
conservativevector fields

ÅMin-max saddle point problems may 
yield non-conservativevector fields

ÅaŜǎŎƘŜŘŜǊΩǎsolution:
consensus optimization,
adding gradient vector field



!ƭƎƻǊƛǘƘƳƛŎ ±ƛŜǿ όŎƻƴǘΩŘύ

ÅTheory of GAN convergence, unification with divergence view
[Mescheder et al., 2018]


